Skip to content
: Global Header">

DC Motor / DC Gear Motor Basics

What is a DC Motor?

A Direct Current (DC) motor is a rotating electrical device that converts direct current, of electrical energy, into mechanical energy. An Inductor (coil) inside the DC motor produces a magnetic field that creates rotary motion as DC voltage is applied to its terminal. Inside the motor is an iron shaft, wrapped in a coil of wire. This shaft contains two fixed, North and South, magnets on both sides which causes both a repulsive and attractive force, in turn, producing torque. ISL Products designs and manufactures both brushed DC motors and brushless DC motors.  We tailor our DC motors size and performance to meet your desired specs.

Learn More

What is a DC Gear Motor?

A gear motor is an all-in-one combination of a motor and gearbox. The addition of a gear head to a motor reduces the speed while increasing the torque output. The most important parameters in regards to gear motors are speed (rpm), torque (lb-in) and efficiency (%). In order to select the most suitable gear motor for your application you must first compute the load, speed and torque requirements for your application. ISL Products offers a variety of Spur Gear Motors, Planetary Gear Motors and Worm Gear Motors to meet all application requirements. Most of our DC motors can be complemented with one of our unique gearheads, providing you with a highly efficient gear motor solution.

 

Motor Solution Database

The Motor Selection Process

Need help determining the right motor for your application? Check out our Motor Selection Guide or Visit the ISL Motor Database.

The motor selection process, at the conceptual design phase, can be challenging but our engineers are here to help. We provide a concierge approach to all of our DC motors and gear motors projects. Our team of engineers work with you to provide the optimal component solution. The following key points can help you determine and select the most appropriate motor or gear motor for our application.

  1. Design RequirementsA design assessment phase where the product development requirements, design parameters, device functionality, and product optimization are studied.
  2. Design CalculationsCalculations used to determine which motor would be the best solution for your application. Design calculations determine gear ratio, torque, rotating mass, service factor, overhung load, and testing analysis.
  3. Types of DC Motors/Gearmotors – The most common electrical motors convert electrical energy to mechanical energy. These types of motors are powered by direct current (DC).
  4. Motor Specifications – Once the design calculations are performed, and the application parameters are defined, you can use this data to determine which motor or gear motor will best fit your application. Some of the most common specs to consider when selecting a motor or gear motor would be:
    • Voltage
    • Current
    • Power
    • Torque
    • RPM
    • Life Expectancy / Duty Cycle
    • Rotation (CW or CCW)
    • Shaft Diameter and Length
    • Enclosure Restrictions

Contact Engineering

Gear Motor Performance Curves

A motors performance and gearbox performance are combined into one graph by displaying three specific parameters. These three parameters are speed, torque and efficiency. These performance curves are essential when selecting a gear motor for your application.

Speed/Revolutions (N) – (unit: rpm) indicated as a straight line that shows the relationship between the gear motor’s torque and speed. This line will shift laterally depending on voltage increase or decrease.

  • Efficiency (η) – (unit: %) is calculated by the input and output values, represented by the dashed line. To maximize the gear motor’s potential it should be used near its peak efficiency.
  • Torque (T) – (unit: gf-cm) this is the load borne by the motor shaft, represented on the X-axis.
  • Current (I) – (unit: A) indicated by a straight line, from no load to full motor lock. This shows the relationship between amperage and torque.
  • Output (P) – (unit: W) is the amount of mechanical energy the gear motor puts out.

How To Read Performance Curves

For example, let’s consider the performance curve below (figure 5) for a DC gear motor.

  • Maximum operating efficiency (70%) for this motor would occur at 3.75 lb-in / 2,100 rpm.
  • As torque increases the speed and efficiency decrease. The result of increased torque is poor output performance and the device will eventually fail to function once the motor reaches its stall torque (18 lb-in).

 

 

Gear motor performance curves are a helpful tool when selecting a motor for your application. To get the most out of the performance curves it’s important to thoroughly understand the applications requirements. You can use your load and speed requirements to help determine the required torque. Most DC motor and gear motor manufacturers provide performance curves upon request.

Resources

  • DC Motor, wikipedia.org
  • What is a DC Gearmotor, robotshop.com
  • How To Select the Right Gear Motor, grainger.com
  • Different Types of Motors and Their Use, rs-online.com
  • Motors Buyer Guide, jameco.com